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Fast regularized image interpolation method
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The regularized image interpolation method is widely used based on the vector interpolation model in
which down-sampling matrix has very large dimension and needs large storage consumption and higher
computation complexity. In this paper, a fast algorithm for image interpolation based on the tensor product
of matrices is presented, which transforms the vector interpolation model to matrix form. The proposed
algorithm can extremely reduce the storage requirement and time consumption. The simulation results
verify their validity.

OCIS codes: 100.2000, 100.3190.

Image interpolation can be used in image enlargement
and local image zooming. Several common interpolation
algorithms have been suggested, such as zero-order inter-
polation, bi-linear interpolation[1], and cubic convolution
interpolation[2]. However, image artifacts like blurring
or zigzag on edge may occur when these interpolation
schemes are used. In order to reduce the effect of im-
age artifacts, other new methods have been proposed,
including directional image interpolation[3], convolution-
based interpolation[4], and edge-directed interpolation[5].
These methods take into account the edge information of
image, and the vision effect is better than the conven-
tional image interpolation methods.

Yoon et al.[6] presented regularized image sequence in-
terpolation by fusing low-resolution (LR) frames. The
regularized iterative image interpolation performs good
subjective quality, nevertheless, requires lots of running
time. In order to reduce the time-consuming, we present
a fast regularization image interpolation method of single
image based on matrix tensor product.

Let xc(p, q) represent a two-dimensional (2D) spatially
continuous image, and x(m, n) is the corresponding digi-
tal image obtained by sampling xc(p, q), with size M×N ,
such as

x(m, n) = xc(mTv, nTh),

m = 0, 1, · · · , M − 1; n = 0, 1, · · · , N − 1, (1)

where Tv and Th represent the vertical and horizontal
sampling intervals respectively. In a similar way, the im-
age with four times LR in both horizontal and vertical
directions can be represented as

y(m, n) =
1
4

1∑
i=0

1∑
j=0

x(2m + i, 2n + j),

m = 0, 1, · · · , M/2 − 1; n = 0, 1, · · · , N/2 − 1.(2)

A discrete linear space-invariant degradation model for
an M/2 × N/2 LR frame obtained by sub-sampling the
original M×N high resolution image frame, can be given
as[7−11]

y = Hx + n, (3)

where the MN × 1 vector x represents the lexicograph-
ically ordered high resolution image frame, and the
MN/4 × 1 vectors y and n represent observed LR and
noise image frames, respectively. H is an MN/4 × MN
uniform down-sampling matrix.

The interpolation problem, therefore, can be formu-
lated as solving the least squares problem for x, given
the observation y. That is, we find the estimation, x̃,
which satisfies the following optimization problem[6],

x = arg min f(x̃), (4)

where

f(x̃) = ‖n‖2 = ‖y − Hx̃‖2
. (5)

From the regularized image restoration theory, it is well
known that solving Eq. (3) is an ill-posed problem. In
order to make the problem better-posed, the following
functional is minimized,

f(x̃) = ‖y − Hx̃‖2 + λ ‖Lx̃‖2 , (6)

where L is the regularization operator, which is prefer-
ably the three-dimensional (3D) Laplacian operator pro-
cess, to capture the between-channel information in the
interpolation process. The parameter λ is a global regu-
larization parameter.

In order to solve the above equation given in Eq. (5),
the successive approximation equation[8] describing the
interpolated image x̃, at the k +1 iteration step, is given
by

x̃k+1 = x̃k + βHT(y − Hx̃k), (7)

where β means the function which controls the conver-
gence rate, and k represents the iteration number. The
successive approximation equation of Eq. (6) by using the
same method may be represented as

x̃k+1 = x̃k + β(HTy − (HTH + λLTL)x̃k). (8)

In image processing field, bit map is the most com-
monly used image format. Consider the bit map with
256 gray levels, that is each pixel in this image must use
8 bits (1 byte) to represent when storing in computer. If
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using the observation model in Eq. (8), the degrading ma-
trix H which is with the size of MN/4×MN , M2N2/4
bytes are needed to store matrix H. It is impossible for
common computer and lots of computation consumption
is required to obtain the solution. In order to reduce the
store consumption and computational complexity, a new
regularized image interpolation is presented.

Now we discuss the tensor product decomposition of
the down-sampling matrix H and regularization matrix
L. For a decimation factor of q, the decimation matrix
H consists of q2 non-zero elements of value 1/q2 along
each row at appropriate locations and has the form[6]

H =
1
q2

⎡
⎢⎢⎣

1 1 · · · 1 0
1 1 · · · 1

. . .
0 1 1 · · · 1

⎤
⎥⎥⎦ . (9)

Equation (9) can be written as

H = H1 ⊗ H2, (10)

where ⊗ represents the tensor product, H1 of size M/2×
M and H2 of size N/2×N represent the one-dimensional
(1D) low-pass filtering and sub-sampling by factor of q
respectively. As an example, for a decimation factor of
q = 2 and M = N , H1 and H2 have the form as

H1 = H2 =
1
2

⎡
⎢⎢⎣

1 1 0 0 · · · 0 0
0 0 1 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 1

⎤
⎥⎥⎦ . (11)

The regularization matrix L is a BTTB (block-
Toeplitz-Toeplitz-block) matrix of size MN × MN for
a decimation factor of q = 2, and is represented as

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P B 0 · · · 0

B P B
. . .

...

0 B P
. . . 0

...
. . . . . . . . . B

0 · · · 0 B P

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The structure of regularization matrix L can be decom-
posed to

L =

⎡
⎢⎢⎣

P
P

. . .
P

⎤
⎥⎥⎦ +

⎡
⎢⎢⎢⎣

0 B

B 0
. . .

. . . . . . B
B 0

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎣

1
1

. . .
1

⎤
⎥⎥⎦ ⊗ P +

⎡
⎢⎢⎢⎣

0 1

1 0
. . .

. . . . . . 1
1 0

⎤
⎥⎥⎥⎦ ⊗ B

= IM ⊗ P − Q⊗ IN , (12)

where IM and IN are the identity matrices of size M and
N respectively, the dimension of P is N × N , and those
of B and Q are M × M , the expression is given by

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 − 1
4 0 · · · 0

− 1
4 1 − 1

4

. . .
...

0 − 1
4 1

. . . 0
...

. . . . . . . . . − 1
4

0 · · · 0 − 1
4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

B = −1
4

⎡
⎢⎢⎢⎣

1 0 · · · 0

0 1
. . .

...
...

. . . . . . 0
0 · · · 0 1

⎤
⎥⎥⎥⎦ ,Q =

⎡
⎢⎢⎢⎢⎣

0 1
4

1
4 0

. . .
. . . . . . 1

4
1
4 0

⎤
⎥⎥⎥⎥⎦

.

By using Eqs. (10) and (12), Eq. (8) is represented as

x̃k+1 = x̃k + β((H1 ⊗ H2)Ty − ((H1 ⊗ H2)T(H1 ⊗ H2)

+λ(I ⊗ P − Q⊗ I)T(I ⊗ P − Q⊗ I))x̃k), (13)

recalling the following properties of the Kronecker
product[9]:

(A ⊗ B)T = (AT ⊗ BT)

(A1 ⊗ B1)(A2 ⊗ B2)=(A1A2 ⊗ B1B2)

(A ⊗ B)reshape(V)=reshape(AVBT), (14)

where reshape(·) reorders the entries of a matrix in row-
wise order into vector format, and applying these prop-
erties to Eq. (13), we have

x̃k+1 = x̃k + β((HT
1 ⊗ HT

2 )y − (HT
1 H1 ⊗ HT

2 H2

+λ(I ⊗ PTP− Q ⊗ PT − QT ⊗ P + QTQ⊗ I))x̃k).

(15)

By using Eq. (14), Eq. (8) is represented as

X̃k+1 = X̃k + β(HT
1 YH2 − (HT

1 H1X̃kH2HT
2

+λ(X̃kPPT − QX̃
k
P − QTX̃kPT + QTQX̃

k
))),

(16)

where X̃k is the kth estimated image matrix. When
k = 0, that is original value X̃0 = βHT

1 YH; Y is the
image matrix. This iteration continues until the cost
function stabilizes or∥∥∥X̃n+1 − X̃n

∥∥∥
F

/∥∥∥X̃n
∥∥∥

F
< T (17)

is satisfied, where T is the threshold value.
The regularization technique involves a tradeoff be-

tween fidelity to the data, as measured by the resid-
ual norm, and the fidelity to some prior information, as
measured by the side constraint norm, the quality of the
solution still depends on the value of regularization pa-
rameter λ. We adopt the L-curve approach for choosing
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the regularization parameter[10], it can be shown that the
optimal λ for this criterion must satisfy

λ = ‖y − Hx̃‖2
2

/
‖Lx̃‖2

2. (18)

By using the Eqs. (10), (12) and (14), Eq. (18) is rep-
resented as

λ =
‖y − (H1 ⊗ H2)x̃‖2

2

‖(I⊗ P − Q⊗ I)x̃‖2
2

=

∥∥∥Y − H1X̃kHT
2

∥∥∥
2

2∥∥∥X̃kPT − QX̃
k
∥∥∥

2

2

. (19)

The proposed regularized image interpolation method
of Eq. (16) has some advantages, compared with inter-
polation method based on vector model, that the sys-
tem storage consumption is reduced by tensor product
decomposition for decimation matrix H and regulariza-
tion matrix L and the proposed algorithm can reduce the
computational complexity.

Now let us analyze the computational complexity of
Eqs. (8) and (16) for each iteration. For simplicity, set
M = N = D, the total operating numbers of the above
two equations are denoted as OP (operating-count)[11].
For example, each element of calculating HTy needs
MN/4 times of operation. Since there are MN ele-
ments in matrix HTy, the total OP for calculating HTy
is (MN)2/4. The required OPs for other parts of Eq. (8)
have the same calculating method with HTy, so we get

OP = MN(1+
5
4
MN +

5
4
M2N2) ≈ 5

4
M3N3 =

5
4
D6.

(20)

In the same way, we get the total OP of Eq. (16) as

OP =
3
2
(M3 + N3)+2MN(

19
8

M+2N + 1) ≈ 11.8D3.

(21)

By comparing Eq. (20) with Eq. (21), it is obvious that
the OP of the proposed algorithms will drop exponen-
tially with increment of image size, compared with the
traditional algorithms.

To demonstrate the performance of the proposed in-
terpolation algorithms, we present a number of experi-
mental results. Also these results are compared with the
traditional algorithms based on the vector model. These
results are calculated on a packet computer.

In order to show the validity of proposed algorithms,
we start with an original image of size 256 × 256 pix-
els. The image is then down-sampled by a factor of 2 to
generate a LR image of size 128 × 128 pixels. The ter-
minate criteria is T = 0.5 × 10−3. Experimental results
are shown in Fig. 1. Figure 1 shows the 256 × 256 high
resolution images reconstructed from the 128 × 128 LR
images.

In Table 1, we compare the storage requirement of
down-sampling matrix with the method based on the vec-
tor model for the test images of size from 16 × 16 to

Fig. 1. Interpolation images. (a) LR image; (b) bi-linear in-
terpolation; (c) proposed method; (d) original HR image.

Table 1. Storage Consumption of
Down-Sampling Matrix

LR Image Vector Model Matrix Model Comparison

32 × 32 4 MB 4 kB 1 k

64 × 64 64 MB 16 kB 4 k

128 × 128 1 GB 64 kB 16 k

256 × 256 16 GB 256 kB 64 k

Table 2. Running Time (Seconds) for
2× Enlarged Images

LR Running Time of Running Time of

Image Vector Model Matrix Model

16 × 16 1.213 0.0310

32 × 32 274.532 0.1410

64 × 64 − 0.5630

128 × 128 − 4.0320

Table 3. PSNR (dB) Comparison of Bi-Linear
Interpolation and the Proposed Method

Image Bi-Linear Interpolation Proposed Method

Lena 27.8990 29.0848

Couple 30.7515 32.2645

Woman 32.1401 34.5829

256 × 256. The running time of test images for 2× en-
larged images was shown in Tables 1 and 2. Table 2 shows
the time consumptions of traditional algorithm based on
vector model. Only 16× 16 and 32× 32 images are used
since the traditional algorithm based on vector model
needs a long running time to get a solution. Comparing
Table 1 with Table 2, we can get some results: firstly,
the proposed algorithm can reduce the processing time
extremely and obtain resolution in reasonable time; sec-
ondly, the time increment factor of traditional algorithm
based on vector model is larger, from Table 2 this is scaled
by hundreds but the presented algorithm is only several
tens. In Table 3, we compare the peak signal-to-noise
ratio (PSNR) of reconstructed image between the pro-
posed algorithm and bi-linear interpolation method. We
see that the proposed algorithm can acquire better qual-
ity.

In this paper, a fast algorithm for image interpolation
based on tensor product of matrix is presented. Our
algorithm transforms the cost function based on vector
model to the matrix form cost function. The proposed
algorithm can reduce storage requirement extremely and
obtain the optimal solution in a reasonable time. Ex-
periment results show the proposed algorithm can also
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break the limits of dimensions that traditional iterative
algorithm cannot implement.

H. Liu’s e-mail address is fenmiao@hit.edu.cn.

References

1. C. Sun, N. Sang, T. Zhang, and X. Wang, Computer
Eng. (in Chinese) 31, 167 (2005).

2. R. G. Keys, IEEE Trans. Acoust. Speech Signal Pro-
cessing 29, 1153 (1981).

3. S. D. Bayraker and R. M. Mersereau, in Proceedings of
ICASSP 1995 4, 2383 (1995).

4. C.-M. Lee and B. Zeng, in Proceedings of ICIP 1999 3,
787 (1999).

5. X. Li and M. T. Orchard, IEEE Trans. Image Processing
10, 1521 (2001).

6. J. S. Yoon, J. H. Shin, J. K. Paik, and S. Y. Han, in
Proceedings of 1999 IEEE TENCON 1271 (1999).

7. Y. Liu, W. Jin, and B. Su, Chin. Opt. Lett. 2, 512
(2004).

8. A. K. Katsaggelos, Opt. Eng. 28, 735 (1989).

9. N. Nguyen and P. Milanfar, Circuit Systems Signal Pro-
cess 19, 321 (2000).

10. A. Bovik, Handbook of Image and Video Processing (2nd
edn.) (in Chinese) (Publishing House of Electronics In-
dustry, Beijing, 2006) p.200.

11. D. Zhang, H. F. Li, and M. Du, Image and Vision Com-
puting 23, 671 (2005).


